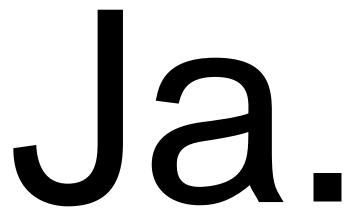


Reichen die Erneuerbaren für die Energiewende?

Belm, 17.07.2021

Klaus Kuhnke

Hochschule Osnabrück, Solarenergieverein Osnabrück (SEV), Osnabrücker Klimaallianz (O.K.), Klimabeirat, S4F



Reichen die Erneuerbaren für die Energiewende?

Die Antwort ist

Reichen die Erneuerbaren für die Energiewende?

Ja. Warum? Inwiefern? Was reicht? Was reicht nicht?


- 1. Her mit der Energiewende!
- 2. Potenziale der Erneuerbaren Energien (EE)
- 3. Reicht der Strom?
- 4. Speicherung
- 5. Ein mögliches Szenario
- 6. Meine eigene Energiewende: Was kann ich tun?

1. Her mit dem Klimaschutz Her mit der Energiewende!

Umweltschädliche Subventionen in Deutschland Angaben in Milliarden

Energiewende: Wer soll das bezahlen?

Solar Energie Verein

Alle reden von den **Kosten** des Klimaschutzes:

Regierung: **54 Mrd. Euro.**

Wer soll das bezahlen?

Beispiele:

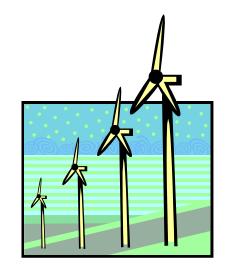
- Steuerfreies Flugbenzin im Inland
- Flughafen-Zuschüsse (FMO: 100 Mio Zuschuss + 1,2 Mio/a "Darlehen")
- Dienstwagen-Privileg
- Diesel-Privileg
- Energiewirtschaft
- Landwirtschaft

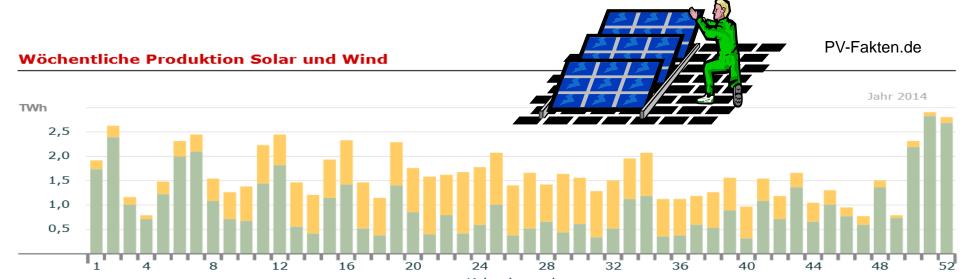
Klimaschädliche **Subventionen** in Deutschland:

UBA: 57 Mrd. Euro /Jahr

2. Potenziale der EE

Erneuerbare Energien (EE)


Erneuerbare Energien bedeuten:


Sonne und Wind, Speichern und Sparen

Bio-, Hydro-, Geo- und Meeres-Energien haben mit Abstand nicht das Potenzial unser Land zu versorgen.

Aber: Diese EE stellen wichtige **Kapazität** für **Energie-Speicherung –** Tages-, Wochen-, Saison-Speicher (?)

Das Angebot von Sonne und Wind ist i.W. ausgeglichen übers Jahr.

Potenzial: Solarenergie

Strahlung in D: ca. 1000 kWh/(m² a)

Wirkungsgrad von **PV**: η (eta) = 15 %

1 m² erbringt also 150 kWh/a

Fläche D: ca. 360 000 km²

Solarenergie gewinnbar: 54 000 000 000 000 kWh/a

= 54 000 TWh/a

Endenergie-Verbrauch: 2 600 TWh/a

Brauchen ca. 0,048 von unserer Fläche, = 5% von unserer Fläche.

Potenzial: Windenergie

1 WKA (2 MW) braucht

0,5 km² Platz

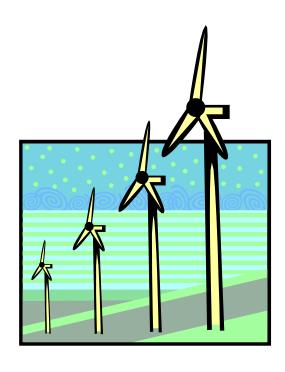
produziert 2,6 Mio kWh/a

1 m² erbringt also

5,2 kWh/a

Fläche D: ca. 360 000 km²

= Platz für 720 000 WKA,


Die produzieren 1 900 000 000 000 kWh/a

1 900 TWh/a

Endenergie-Verbrauch in D: 2 600 TWh/a

Wind-Potenzial: ca. 70% unserer Energie.

Aber man kann ja...

... Wind und Solar zusammen stellen auf dieselbe Fläche.

Potenzial: Wasserkraft

Wasserkraft produziert konstant ≈ 4 % vom Stromverbrauch

(Stromverbrauch D: ca. 600 TWh/a)

Wasserkraft produziert konstant ≈ 24 TWh/a

Anteil **nicht erheblich zu steigern** (1 kWh bedeutet: 1 m³ Wasser 400 m hoch)

Bsp: Haster Mühle: 10 ... 15 kW

= 87 600 kWh/a, entspr. 30 Haushalten.

Potenzial: Bio-Energie

1 Hektar erbringt:

Kraftstoff: 1 400 ... 5 000 l/a Benzin-eq. (Biodiesel ... Biogas)

= 14 000 ... 50 000 kWh/a

Heiz-Holz: 2,5 Fm/a (Festmeter): Schwachholz, Sägerückstände

= 5 000 kWh/a.

Fläche D: Agrarland: **50%** ≈ 180 000 km², Wald 32% ≈ 120 000 km²

Agrar-Potenzial: 250 ... 900 TWh / a

Wald-Potenzial: 60 TWh / a von 2600 TWh / a.

1.Generation
Nur aus
Ölsamen Stärke u. Zucker

1550 Liter

BIOMASSE Biodiesel

BRENNWERT

Hauptbestandteile

= 1411

Liter Diesel
Raps u.a. Ölpflanzen

Bioethanol

Jahreserträge aus einem Hektar Anbaufläche

4000 Liter

BtL-Diesel

=3720

Liter Diesel

2. Generation
Ganze Pflanze
incl. Holz, Stroh

Holz, Agrarpflanzen Agrarpflanzen, Gülle, Biomüll

3560

kg

Biogas

=4984

Liter Benzin

Spiegel Special, 1/2007

Potenziale Holzheizung

Pro ha Wald (neben dem Nutzholz) 2,5 Fm/(ha a) zur energetischen Nutzung

(Schwachholz + unverkaufb. Sägerückstände [2])

Energieertrag: E' = 2,5 Fm/(ha·a) · 2,43 Srm/Fm · 850 kWh/Srm = 5163 kWh/(ha·a)

E' = 5000 kWh/(ha·a)also ca.

- mit Heizenergiekennwert von 85 kWh/(m²a) (nach WSchV 95)
 - 1 ha kann Nutzfläche von ca. 60 m²/ha beheizen,
- nach ESparV 2001 mehr: 1 ha beheizt ca. 100 m² / (ha·a)
- Faustformel zur Beheizung eines Hauses aus Restholz usw.:
 - 1 freistehendes Einfamilienhaus = 2 ha Wald

1 NEH KFW 40 = 1 ha Waldentspr.

3 Passivhäuser = 1 ha Wald. oder

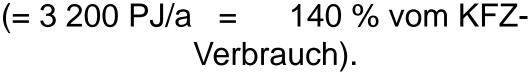
Zusammenfassung: Potenziale EE

Deutschland verbraucht Endenergie 2 600 TWh/a = 100 %

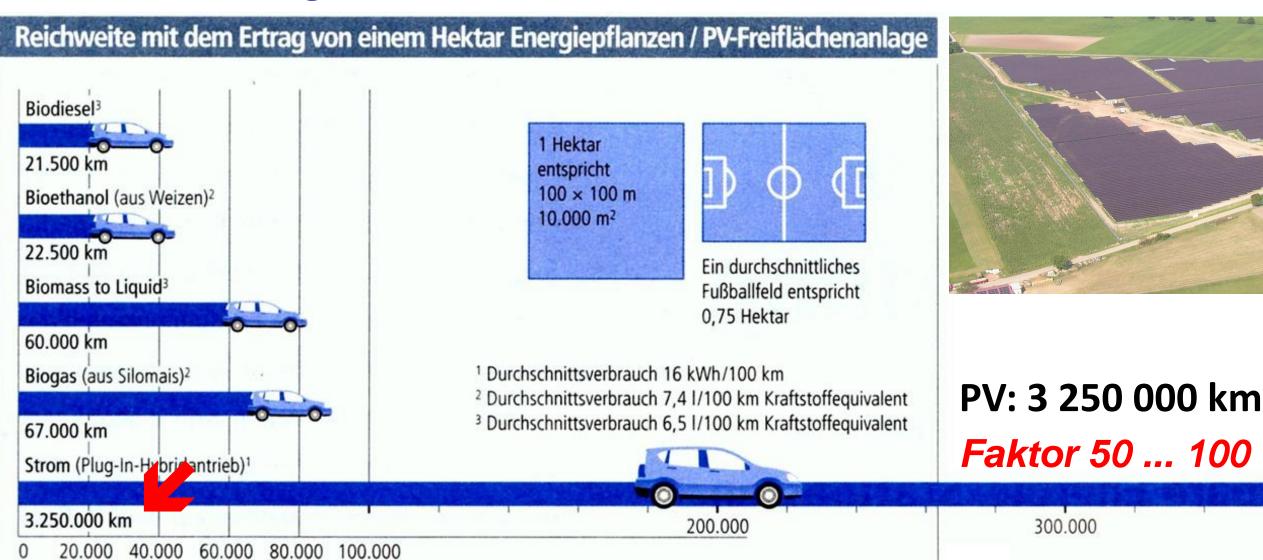
Wasserkraft liefert 24 TWh/a = 1 %

Potenzial **Solarenergie** 54 000 TWh/a = 2 000 %

Potenzial **Windenergie** 1 900 TWh/a = 70 %


Potenzial **Bio-Brennstoff (Holz)** 60 TWh/a = 7 %

Potenzial **Biokraftstoff** 900 TWh/a = 35 %



Vergleich Biokraftstoffe – Solarstrom: Ertrag von einem Hektar

Fossil-freier Antrieb für Verbrenner: Möglichkeiten

Benzin, Diesel

Flüssiggas, Erdgas

Muskelkraft

Strom

Bio-Kraftstoffe: - Biogas

- Ethanol aus Weizen, Mais, Zuckerrohr (BtL)

- Biodiesel aus Ölpflanzen: Rapsöl, Palmöl

- 2. Generation: BtL (2 x besser)

Künstliche Kraftstoffe: - Power to Gas (PtG)

- Power to Liquid (PtL)

- Power to Hydrogen (PtH₂)

(hier: power = Elektrizität aus EE).

PtH₂: Wasserstoff aus Strom

Umwandlungskette PtH2

- Strom aus Sonne, Wind → Wasserstoff → Bewegung

Gesamtwirkungsgrad: 36 %

Vergleich: Mit 15 kWh aus Strom kann

- Ein **Elektroauto** 100 km fahren

PtL, PtG: Kraftstoff aus Strom

Umwandlungskette **PtL** (Power to Liquid), **PtG** (Power to Gas)

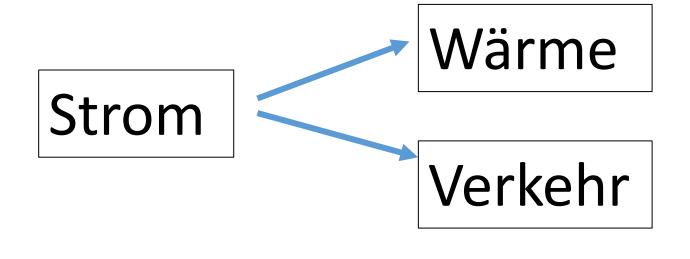
Strom aus Sonne, Wind → Wasserstoff → Benzin oder Gas

→ Bewegung

Gesamtwirkungsgrad: 12 %

Vergleich: Mit 15 kWh aus Strom kann

- Ein **Elektroauto** 100 km fahren
- Ein Verbrennungs-Auto 12 km fahren.
- Elektroauto besser um Faktor 8.



Sektorkopplung: Alles elektrisch?

Sonne und Wind liefern i.W. elektrische Energie

Energiewende:

Irgendwann wird (fast) alles elektrisch.

Klimaschutz

= CO₂-Emissionen vermeiden

= Verbrennung vermeiden

Maßnahmen:

- Energie einsparen
- Erneuerbare Energien

 Die Zukunft ist elektrisch (?).

Nachhaltige Mobilität

Mobilität ist nicht Auto.

Mobilität ist

- zu Fuß gehen

- Fahrrad

- E-Bike

- Segway, SBU

- Roller

- Busse

- Stadtbahn

- Fernzüge

- Auto

- Flugzeug;

- Lastenfahrrad

- Lieferwagen

- Lastwagen

- Schiff, Flugzeug -

und in der Zukunft: Alles ohne fossile Energie...

3. Reicht der Strom? (1)

Solar
Energie
Verein
Wir engagieren uns mit Energie.

1. Mobilitätswende ist nicht nur Antriebswende. Eine andere Fahrzeug-Nutzung ist gefragt:

Mehr Zug, mehr Bus, mehr (Elektro-)Rad, mehr Car-sharing, weniger MIV.

2. Selbst wenn:

Energieverbrauch Straßenverkehr

entspricht Stromverbrauch von

Stromerzeugung (2017)

→ Strom-Mehrverbrauch durch E-Autos

2300 PJ/a (27,5 % Wirkungsgr.)

700 PJ/a

= 200 TWh / a

520 TWh / a

+ 38 %.

(EE im Strom heute: 43 % = 276 TWh/a)

HOCHSCHULE OSNABRÜCK
UNIVERSITY OF APPLIED SCIENCES

Reicht der Strom? (2)

1. Wärmewende in den Haushalten: Mit Wärmepumpen

Bestand: Brauchen 3 %/Jahr energetische Sanierung

Machen aber nur 1 %/Jahr

2. Selbst wenn (Wärmeverbrauch 2017, weitgehend unsaniert)
Wärmeverbrauch Öl/Gas 412 TWh / Jahr (Haushalte)

Zu decken mit Wärmepumpe (Leistungszahl ca. 3) Zuküftiger Verbrauch 140 TWh / Jahr

Stromerzeugung (2017)

520 TWh / Jahr

→ Strom-Mehrverbrauch durch Heizung + 27 %.

(EE im Strom heute: 43 % = 276 TWh)

Wie viel EE haben wir?

Str	ome	rzeug	gung	j 2018	8:
				,	

Solar PV

46 TWh

Wind 110 TWh

Bio **51 TWh**

Wasser **18 TWh**

Installierte Leistung (2018)

GW

8,6 GW

Faustformel:

(davon 6,4 offshore)

5,6 GW. 1 GW Solar erzeugt 1 TWh/a 1 GW Wind erzeugt 2 TWh/a

Anteil EE heute a.d.Stromerzeugung 2021: 50 %

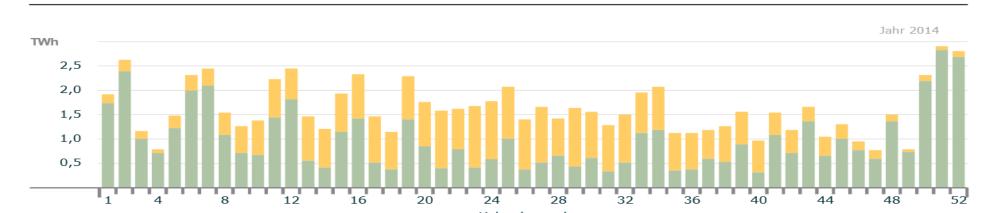
ESYS-Studie: Brauchen 5-7 x diese Kapazität bis 2050.

Wie viel EE brauchen wir?

Stromerzeu	igung 2018:	Installiert 2018	brauchen 2050
Solar PV	46 TWh	45 GW	200 GW
Wind	110 TWh	59 GW	230 GW (180 on + 50 off)
Bio	51 TWh	8,6 GW	
Wasser	18 TWh	5,6 GW.	

Anteil EE heute a.d.Stromerzeugung 2021: 50 %

ESYS-Studie: Brauchen 5-7 x diese Kapazität bis 2050.


Für den Winter incl. strahlungsarmer Perioden:

- 5...7 x die Solar- und Wind-Anlagen von heute
 - + 2 x die Gaskraftwerke von heute.

SCIENTIAN EUROPE

WARUM?

Wöchentliche Produktion Solar und Wind

ESYS, Spiegel 28.12.2019, Burger, ISE

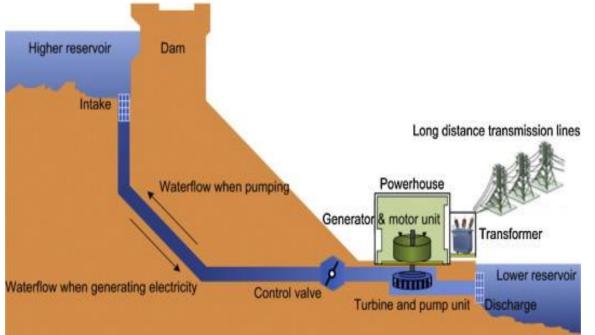
4. Speicherung

Speicherung =

Zeitliche Trennung von Angebot und Nachfrage

1 Autobatteriespeichert1/2 kWh Strom.Teuer, schwer.

1 m² Holz, 2 m hoch speichert3000 kWh Wärme.Billig, leicht.


Pumpspeicher-Kraftwerke

- 100x billiger als Batterien
- Höhen-abhängig: $E_{pot} = m \cdot g \cdot h$
- 1 kWh \cong 1 m³ Wasser x 400 m Höhe
- → gut im Gebirge
- Braucht Platz in der Natur → Problem

Hornbergbecken 1 und 2

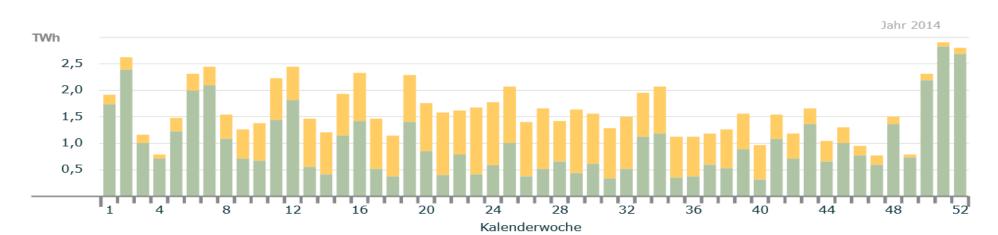
direct.com, freiburgschwarzwald.de

Kurzzeit- und Langzeit-Speicher

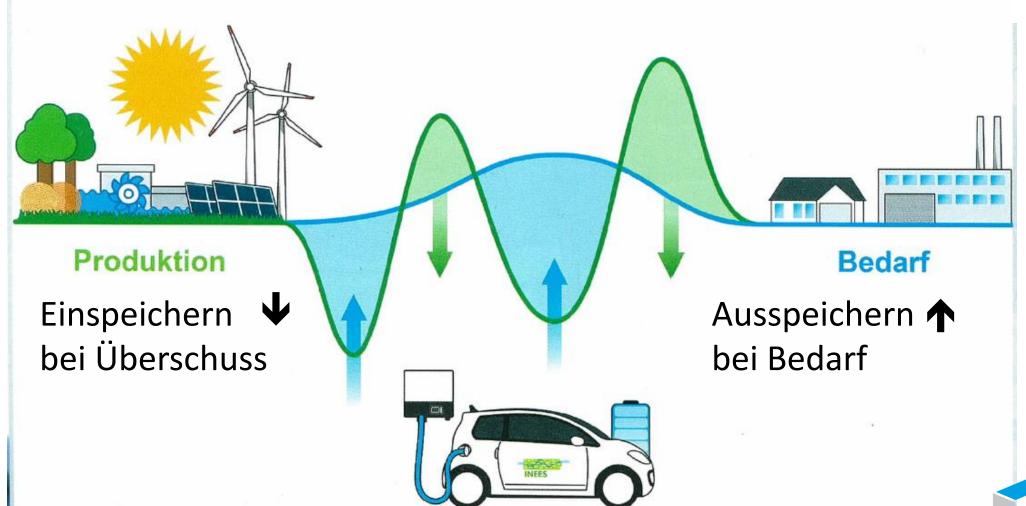
- Saisonspeicher, Jahresspeicher = Langzeit-Speicher
- Ladung/Entladung: 1x / Jahr
- Kosten pro kWh = Investition / gespeicherte Energie
- Tagesspeicher = Kurzzeit-Speicher
- Ladung/Entladung: 365 x / Jahr
- Kosten pro kWh: 365 x billger

Solaranalgenportal.de www.freiburgschwarzwald.de

Speicher für Privat-Haushalte


Power to Gas (PtG) ←→ Power to Heat (PtH)

Beide speichern, beide substituieren Erdgas:


- PtG macht Methan
- PtH macht Wärme und spart Erdgas
- **PtG** mit Kette von **aufwändigen Apparaten ⊗,** aber Speicher **vorhanden** ⊗ Elektrolyse, Methanisierung ... **Wirkungsgrad ڬ** ⊗
- **PtH** mit einfachem **Heizwiderstand** oder **Wärmepumpe** ②, braucht **Leitungen**. ②

Wöchentliche Produktion Solar und Wind

Mobile Batterien – Das Auto als Speicher

Mobile Batterien: Wie viel bringt das fürs ganze Land?

1 Elektroauto:

Verfügbare Ladung z.B. 10 kWh

Leistung (Ladung/Entladung): 3 - 12 kW

1 Million E-Autos \rightarrow 0,01 TWh, \rightarrow **10 min**, **20 Millionen** E-Autos \rightarrow 0,2 TWh, \rightarrow **3,2 h**

vom Stromverbrauch des Landes.;

Diese Menge E-Autos könnte also ganz Deutschland theoretisch für **10 min** oder **3,2 Stunden** elektrisch am Laufen halten.

Demand Side Management

Speichern =

Angebot u. Nachfrage zeitlich verschieben: Speicherung el. Energie in nicht-elektrischer Form.

Industrie und Gewerbe:

Leistung je nach Tarif abfordern,

ggf. Produktion runterfahren,

Bsp:

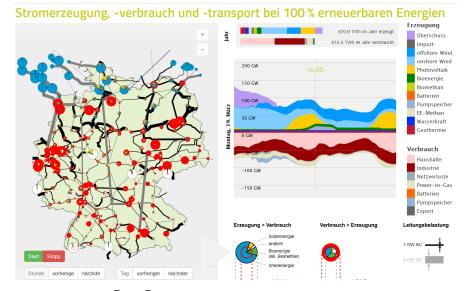
Aluminiumhütte, Stahlwerk, Kühlhaus, Wäscherei ...

Privat: je nach zeitlich variablem Tarif.

Bioenergie

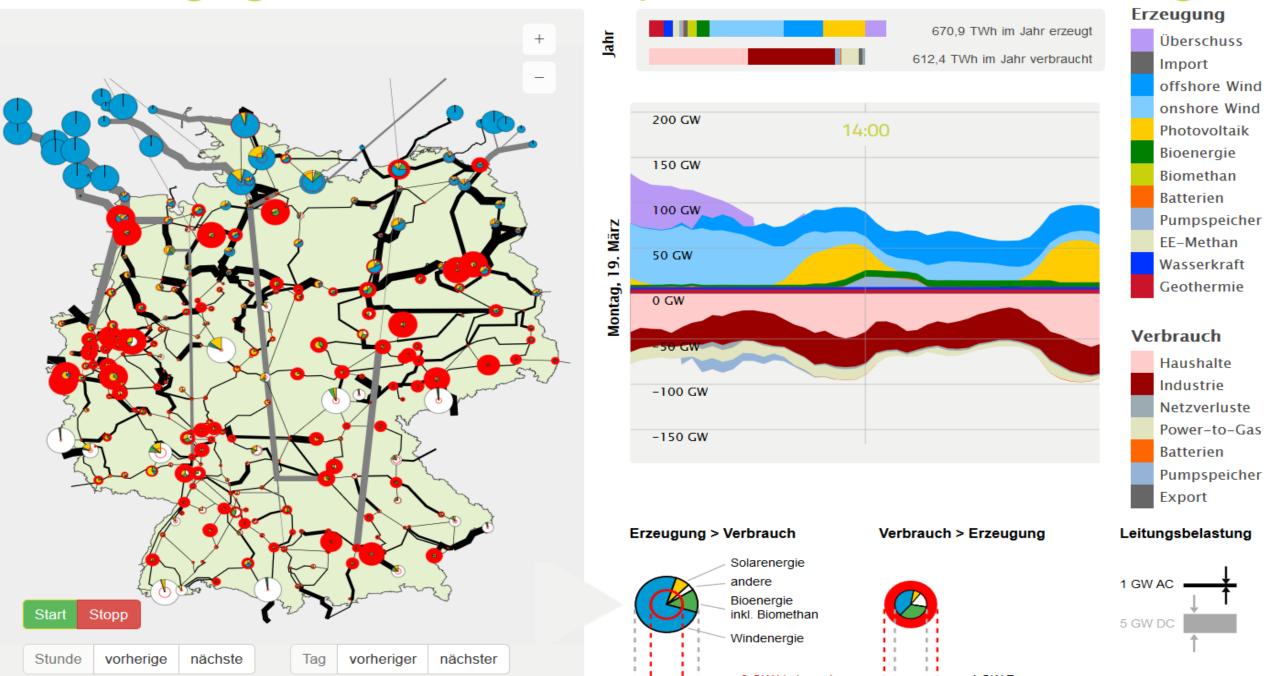
- Potenzial reicht nicht in Deutschland für
 - Kraftstoff
 - Heizung. Aber ...
- Speicher-Funktion: Biomasse ist lagerfähig.
 - flexibler Betrieb von Biogasanlagen: statt 24/24 lieber 4-fache Leistung, ¼ der Zeit
 - Holz-Heizkraftwerke.

Speichern leicht gemacht: Holz Veolia.de, bildarchiv-hamburg.de, Langelsheim, diepresse.com



Regeneratives Kombikraftwerk

(www.Kombikraftwerk.de)



Hier wird gezeigt, wie **Deutschland** das **ganze Jahr** mit Strom aus **Erneuerbaren Energien** versorgt werden kann:

Reales Wetter (Sonne, Wind) Reale Verbrauchsdaten.

Stromerzeugung, -verbrauch und -transport bei 100 % erneuerbaren Energien

Das reg. Kombikraftwerk zeigt:

- Regenerative Vollversorgung ist möglich
- Die Fluktuation der EE wird ausgeglichen durch
 - Kurzzeit-Speicherung
 - Bio-Energie
 - etwas Import/Export.

www.kombikraftwerk.de

	Leistung	Kosten	Kosten	Quelle
	2050	2011	2050	
Spezifische Kosten		€/kW	€/kW	
Wind-Onshore	180 GW abzgl. Bestand			eigene Berechnung (e.B.)
- Starkwind	50 %	1.160	1.010	Lernrate 3 %/5 %
- Schwachwind	50 %	2.000	1.600	
Wind-Offshore	50 GW	4.240	2.500	e. B. [Fichtner, Prognos 2013]
Photovoltaik	200 GW abzgl. Bestand			[ISE 2013]
- Freifläche	50 %	1.075	485	
- Dach (klein)	50 %	1.390	625	
Differenzkosten E-Wärmepumpen (inkl. Heizungstechnik)		2.210	1.475	e.B. [ISE et al. 2013]
Differenzkosten E-Fahrzeuge (pro Fahrzeug)		13.000 €/ Fahrzeug	1.000 €/ Fahrzeug	[EWI 2010]
Ausbau Ladesäulen E-Fahrzeuge (pro Fahrzeug)		2.000 €/ Fahrzeug	725 €/ Fahrzeug	[ZEV et al. 2011]
Stationäre Batterien (8h Kapazität)	10 GW	1.934	435	e.B. [ISEA 2012] u.a.
Power-to-Gas	78 GW	2.000	750	e. B.
Power-to-Heat	23 GW	100	100	e. B.
Aggregierte Kosten	Mrd €			
Ausbau Übertragungsnetz	27			[Enervis, BET 2013]
Ausbau Verteilnetz	15			[Enervis, BET 2013]
SmartGrid	7			[Kema 2012]
Ausbau Netz Oberleitungs-LKW	14			[SRU 2012]
Gebäudedämmung	Gebäudedämmung 237			[Prognos 2013]

Tab. 1: Kostenbestandteile für ein Vollversorgungsszenario

Regeneratives Kombikraftwerk

Haben heute in D:

44 GW Solar- und \rightarrow x 4

58 GW Windenergie → x 4

www.kombikraftwerk.de

5. Meine eigene Energiewende: Was kann ich tun?

• Stromwechsel, z.B. Energiegenossenschaft nwerk e.G.

• LED einschrauben

Rad, E-Rad, Bus und Bahn statt Auto und Flieger

- geeignete Urlaubsziele auswählen
- Balkonmodul aufstellen, anschließen (Regeln beachten)
- Weniger Fleisch essen \(\frac{1}{2}\)

- Heizenergie sparen 놀
- Kolleg*innen usw. motivieren

- Freitag, 23.07.21: Große Demo fürs Klima: 12 h Willy-brandt-Platz, OS. Danholf.de, pvplug.de pvplug.de, rindfleisch.com, FFF, DB AG ,facebook.com

Zusammenfassung

- Energiewende ist bezahlbar. Das Geld ist da
- EE sind i. W. Sonne und Wind, Sparen und Speichern
- Wasser- und Bio-Energie i.W. zum Speichern
- Die Zukunft ist i.W. elektrisch
- Der EE-Strom reicht aus
- EE-Vollversorgung erfordert ein Vielfaches der theor. Leistung
- **Direkte** Strom-Nutzung (E-Fahrzeuge) ist **viel effizienter** als Bio-Kraftstoffe und Power-2-Gas
- Speichern ist zeitliches Verschieben von Angebot u. Nachfrage
 - hier helfen Power-2-Heat und Power-2-Gas
- Die kleine E-Wende: Selber machen.

Vielen Dank.

k.kuhnke@posteo.de

